4 research outputs found

    Advanced Data Mining and Machine Learning Algorithms for Integrated Computer-Based Analyses of Big Environmental Databases

    Get PDF
    Einsicht in die räumliche Verteilung geotechnischer und hydrologischer Untergrundeigenschaften sowie von Reservoir- und Umweltparametern sind grundlegend für geowissenschaftliche Forschungen. Entwicklungen in den Bereichen geophysikalische Erkundung sowie Fernerkundung resultieren in der Verfügbarkeit verschiedenster Verfahren für die nichtinvasive, räumlich kontinuierliche Datenerfassung im Rahmen hochauflösender Messverfahren. In dieser Arbeit habe ich verschiedene Verfahren für die Analyse erdwissenschaftlicher Datenbasen entwickelt auf der Basis von Wissenserschließungsverfahren. Eine wichtige Datenbasis stellt geophysikalische Tomographie dar, die als einziges geowissenschaftliches Erkundungsverfahren 2D und 3D Abbilder des Untergrunds liefern kann. Mittels unterschiedlicher Verfahren aus den Bereichen intelligente Datenanalyse und maschinelles Lernen (z.B. Merkmalsextraktion, künstliche neuronale Netzwerke, etc.) habe ich ein Verfahren zur Datenanalyse mittels künstlicher neuronaler Netzwerke entwickelt, das die räumlich kontinuierliche 2D oder 3D Vorhersage von lediglich an wenigen Punkten gemessenen Untergrundeigenschaften im Rahmen von Wahrscheinlichkeitsaussagen ermöglicht. Das Vorhersageverfahren basiert auf geophysikalischer Tomographie und berücksichtigt die Mehrdeutigkeit der tomographischen Bildgebung. Außerdem wird auch die Messunsicherheit bei der Erfassung der Untergrundeigenschaften an wenigen Punkten in der Vorhersage berücksichtigt. Des Weiteren habe ich untersucht, ob aus den Trainingsergebnissen künstlicher neuronaler Netzwerke bei der Vorhersage auch Aussagen über die Realitätsnähe mathematisch gleichwertiger Lösungen der geophysikalischen tomographischen Bildgebung abgeleitet werden können. Vorhersageverfahren wie das von mir vorgeschlagene, können maßgeblich zur verbesserten Lösung hydrologischer und geotechnischer Fragestellungen beitragen. Ein weiteres wichtiges Problem ist die Kartierung der Erdoberfläche, die von grundlegender Bedeutung für die Bearbeitung verschiedener ökonomischer und ökologischer Fragestellungen ist, wie z.B., die Identifizierung von Lagerstätten, den Schutz von Böden, oder Ökosystemmanagement. Kartierungsdaten resultieren entweder aus technischen (objektiven) Messungen oder visuellen (subjektiven) Untersuchungen durch erfahrene Experten. Im Rahmen dieser Arbeit zeige ich erste Entwicklungen hin zu einer automatisierten und schnellen Integration technischer und visueller (subjektiver) Daten auf der Basis unterschiedlicher intelligenter Datenanalyseverfahren (z.B., Graphenanalyse, automatische Konturerfassung, Clusteranalyse, etc.). Mit solchem Verfahren sollen hart oder weich klassifizierte Karten erstellt werden, die das Untersuchungsgebiet optimal segmentieren um höchstmögliche Konformität mit allen verfügbaren Daten zu erzielen

    Flexible Mobility On-Demand: An Environmental Scan

    No full text
    On-demand shared mobility is increasingly being promoted as an influential strategy to address urban transport challenges in large and fast-growing cities. The appeal of this form of transport is largely attributed to its convenience, ease of use, and affordability made possible through digital platforms and innovations. The convergence of the shared economy with a number of established and emerging technologies—such as artificial intelligence (AI), Internet of Things (IoT), and Cloud and Fog computing—is helping to expedite their deployment as a new form of public transport. Recently, this has manifested itself in the form of Flexible Mobility on Demand (FMoD) solutions, aimed at meeting personal travel demands through flexible routing and scheduling. Increasingly, these shared mobility solutions are blurring the boundaries with existing forms of public transport, particularly bus operations. This paper presents an environmental scan and analysis of the technological, social, and economic impacts surrounding disruptive technology-driven shared mobility trends. Specifically, the paper includes an examination of current and anticipated external factors that are of direct relevance to collaborative and low carbon mobility. The paper also outlines how these trends are likely to influence the mobility industries now and into the future. The paper collates information from a wide body of literature and reports on findings from actual ‘use cases’ that exist today which have used these disruptive mobility solutions to deliver substantial benefits to travellers around the world. Finally, the paper provides stakeholders with insight into identifying and responding to the likely needs and impacts of FMoD and informs their policy and strategy positions on the implementation of smart mobility systems in their cities and jurisdictions

    Applications of Artificial Intelligence in Transport: An Overview

    No full text
    The rapid pace of developments in Artificial Intelligence (AI) is providing unprecedented opportunities to enhance the performance of different industries and businesses, including the transport sector. The innovations introduced by AI include highly advanced computational methods that mimic the way the human brain works. The application of AI in the transport field is aimed at overcoming the challenges of an increasing travel demand, CO2 emissions, safety concerns, and environmental degradation. In light of the availability of a huge amount of quantitative and qualitative data and AI in this digital age, addressing these concerns in a more efficient and effective fashion has become more plausible. Examples of AI methods that are finding their way to the transport field include Artificial Neural Networks (ANN), Genetic algorithms (GA), Simulated Annealing (SA), Artificial Immune system (AIS), Ant Colony Optimiser (ACO) and Bee Colony Optimization (BCO) and Fuzzy Logic Model (FLM) The successful application of AI requires a good understanding of the relationships between AI and data on one hand, and transportation system characteristics and variables on the other hand. Moreover, it is promising for transport authorities to determine the way to use these technologies to create a rapid improvement in relieving congestion, making travel time more reliable to their customers and improve the economics and productivity of their vital assets. This paper provides an overview of the AI techniques applied worldwide to address transportation problems mainly in traffic management, traffic safety, public transportation, and urban mobility. The overview concludes by addressing the challenges and limitations of AI applications in transport
    corecore